Worasak Sukkabot
รศ.ดร.วรศักดิ์ สุขบท
Worasak Sukkabot
Department : ภาควิชาฟิสิกส์
Room : SC385
Phone : 4427
Mobile : 880137387
E-mail :
Education

2000 - 2003                 BSc. In Physics 1st Honor class, Department of Physics, Ubon Ratchathani University

2004 - 2005                 Certificate Degree in Teaching, Silpakorn University, Nakhon Pathom, Thailand

2006 - 2010                 PhD. in Physics, University of Surrey, Guildford, UK

Research interest

Atomistic tight-binding theory in semiconductor nanostructures

Density function theory in dilute magnetic semiconductors

Research grant
  • 1. Electronic structure and optical properties of III-V and II-VI core/shell nanocrystals

    Funding agency: National Research Council of Thailand (NRCT) (October 2012 - September 2013).

    2. Tight-binding calculations of fine structure splitting in core/shell nanocrystals

    Funding agency: National Research Council of Thailand (NRCT) (October 2013 - September 2014).

    3. Structural and optical properties of III-V and II-VI core/multi-shell nanocrystals: Atomistic tight-binding model

    Funding agency: National Research Council of Thailand (NRCT) (October 2014 - September 2015).

    4. Atomistic tight-binding theory of optical fine structures in II-VI and III_VI core/shell nanocrystals as the polarization-entangled photon pair emitters

    Funding agency: Thailand Research Fund (TRF) (July 2015 - June 2017).

    5. Atomistic tight-binding calculations of fine structure splitting in core/multi-shell nanocrystals

    Funding agency: Thailand Toray Science Foundation (Toray) (March 2018 - March 2019)

Working experience
  • 2563 ถึง 2565 ประธานหลักสูตรวิทยาศาสตรมหาบัณฑิต สาขาฟิสิกส์และปรัชญาดุษฎีบัณฑิต สาขาวิชาฟิสิกส์

Publication
  1. 1. Worasak Sukkabot, “Tight-binding Calculation of Exciton States in InAs Nanocrystals”, Integrated Ferroelectrics. 156 (2014) 29-35.

    2. Worasak Sukkabot, “Electronic structure and optical properties of colloidal InAs/InP core/shell nanocrystals: Tight-binding calculations”, Physica E-Low-Dimensional Systems & Nanostructures. 63 (2014) 235-240.

    3. Worasak Sukkabot, “Influence of ZnSe core on the structural and optical properties of ZnSe/ZnS core/shell nanocrystals: Tight-binding theory”, Superlattices and Microstructures. 75 (2014) 739-748.

    4. Worasak Sukkabot, “Tight-binding Calculations of Ellipsoidal InAs Nanocrystals”, Chiang Mai Journal of Science. 41 (2014) 1375-1383.

    5. Worasak Sukkabot, “Tight-binding study of the manipulation of the structural and optical properties in cadmium selenide/zinc sulfide core/shell nanocrystals with shell thickness”, Materials Science in Semiconductor Processing. 27 (2014) 1020-1027.

    6. Worasak Sukkabot, “Tight-binding theory in morphological evolution of CdSe/ZnS core/shell nanodisk to CdSe/ZnS core/shell nanorods”, Physica Scripta. 89 (2014).

    7. Worasak Sukkabot, “Tight-binding theory of the excitonic states in colloidal InSb nanostructures”, Materials Science in Semiconductor Processing. 27 (2014) 51-55.

    8. Worasak Sukkabot, “Variation in the structural and optical properties of CdSe/ZnS core/shell nanocrystals with ratios between core and shell radius”, Physica B-Condensed Matter. 454 (2014) 23-30.

    9. Worasak Sukkabot, “Atomistic tight-binding theory in CdSe/ZnSe wurtzite core/shell nanocrystals”, Computational Materials Science. 96 (2015) 336-341.

    10. Worasak Sukkabot, “Structural and optical properties of zinc-blende CdSe/CdS core/shell nanocrystals: Atomistic tight-binding theory”, Materials Science in Semiconductor Processing. 34 (2015) 14-20.

    11. Worasak Sukkabot, “Effect of ZnS shell on tight-binding simulation of zinc-blende ZnTe/ZnS core/shell nanocrystals”, Computational Materials Science. 101 (2015) 275-280.

    12. Worasak Sukkabot, “Role of structural and composition detail in atomistic tight-binding calculations of InN nanocrystals” Materials Science in Semiconductor Processing. 38 (2015) 142-148.

    13. Worasak Sukkabot, “Structural properties of SiC zinc-blende and wurtzite nanostructures: Atomistic tight-binding theory” Materials Science in Semiconductor Processing. 40 (2015) 117-122.

    14.  Worasak Sukkabot, “Atomistic tight-binding computations in electronic structures and optical properties of type-II CdTe/CdSe core/shell nanocrystals”, Computational Materials Science. 111 (2016) 23-27.

    15. Worasak Sukkabot, “Atomistic tight-binding computations of the electronic properties of ZnSe/ZnS core/shell nanocrystals under applied electric field” Materials Science in Semiconductor Processing. 41 (2015) 252-256.

    16. Worasak Sukkabot, “Manipulation of structural and optical properties in charge-separating ZnTe/ZnSe chalcogenide core/shell semiconductor nanocrystals: Atomistic tight-binding theory”, Physica E-Low-Dimensional Systems & Nanostructures. 74 (2015) 457-460.

    17. Akkaratch Sukerm and Worasak Sukkabot, “Atomistic tight-binding theory of CdSe wurtzite nanocrystals”, Chiang Mai Journal of Science. 42 (2015) 990-995.

    18. Worasak Sukkabot, “Tight-Binding Theory of Electron-Hole Exchange Interaction in Morphological Evolution of CdSe/ZnS Core/Shell Nanodisk to CdSe/ZnS Core/Shell Nanorod”, Journal of Nanomaterials. 2016 (2016) 1-6.

    19. Worasak Sukkabot, “Excitonic fine structure splitting in ZnTe/ZnX (X = S and Se) core/shell nanocrystals: Atomistic tight-binding theory”, Superlattices and Microstructures. 91 (2016) 208-215.

    20. Worasak Sukkabot, “Atomistic tight-binding computations of excitonic fine structure splitting in CdSe/ZnSe type-I and ZnSe/CdSe invert type-I core/shell nanocrystals” Materials Science in Semiconductor Processing. 47 (2016) 57-61.

    21. Worasak Sukkabot, “Atomistic tight-binding computations in structural and optical properties of CdSe/ZnSe/ZnS core/multi-shell nanocrystals”, Superlattices and Microstructures. 95 (2016) 71-77.

    22. Worasak Sukkabot, “Manipulation of structural and optical behaviors in zincblende and wurtzite mercuric sulfide (HgS) nanocrystals: atomistic tight-binding theory”, Journal of Computational Electronics. 15(3) (2016) 756-762.

    23. A. Kesorn, P. Kalasuwan, A. Sinsarp, W. Sukkabot and S. Suwanna, “Effects of square electric field pulses with random fluctuation on state dynamics of InAs/GaAs double quantum dots”,  Integrated Ferroelectrics 175(1) (2016) 220-235.

    24. Worasak Sukkabot, “Atomistic tight-binding computations in the new class of CdSe/AlP II–VI core/III–V shell nanocrystals”, Journal of Computational Electronics. 15(4) (2016) 1248-1254.

    25. Worasak Sukkabot, “Stokes shift and fine structure splitting in composition-tunable ZnxCd1-xSe nanocrystals: Atomistic tight-binding theory”, Physica B: Condensed Matter. 506 (2017) 192-197.

    26. Worasak Sukkabot and Udomsilp Pinsook, “Atomistic tight-binding theory of excitonic splitting energies in CdX(X = Se, S and Te)/ZnS core/shell nanocrystals”, Superlattices and Microstructures. 101 (2017) 15-22.

    27. Worasak Sukkabot, “Structural and optical manipulation of colloidal Ge1-xSnx nanocrystals with experimentally synthesized sizes: Atomistic tight-binding theory”, Superlattices and Microstructures. 102 (2017) 342-350.

    28. Worasak Sukkabot, “Composition manipulation of near infrared InAsxSb1-x nanocrystals: Atomistic tight-binding theory”, Superlattices and Microstructures. 105 (2017) 65-73.

    29.  Worasak Sukkabot, “Atomistic tight-binding calculations of near infrared emitting CdxHg1-xTe nanocrystals”, Computational Materials Science. 138 (2017) 166-174.

    30. Worasak Sukkabot, “Manipulation of structural and optical properties in ZnO/ZnS type-II and ZnS/ZnO invert type-II core/shell nanocrystals: Tight-binding theory”, Journal of Computational Electronics, 16(3) (2017) 756-764.

    31. Worasak Sukkabot, “Atomistic tight-binding theory in 2D colloidal CdSe zinc-blende nanoplatelets”, Journal of Computational Electronics, 16(3) (2017) 796-804.

    32. Worasak Sukkabot, “Theoretical simulation of exciton and biexciton of ZnTe/ZnS type-I and ZnTe/ZnSe type-II core/shell nanocrystals”, Maejo Int. J. Sci. Technol. 11(02) (2017) 164-174.

    33. Worasak Sukkabot, “Stokes shift and fine-structure splitting in CdSe/CdTe invert type-II and CdTe/CdSe type-II core/shell nanocrystals: Atomistic tight-binding theory”, Pramana - J Phys 90 (2018) 21.

    34. Worasak Sukkabot, “Tight-binding simulation of core impact on structural and optical properties of InN/GaN core/shell nanocrystals”, Chiang Mai Journal of Science. 45 (2) (2018) 1138-1144.

    35. Worasak Sukkabot, “Atomistic tight-binding computations of the structural and optical properties of CdTe/CdX (X=S and Se)/ZnS core/shell/shell nanocrystals”, Philosophical Magazine 98(15) (2018) 1360-1375.

    36. Worasak Sukkabot, “Atomistic tight-binding simulations of quaternary-alloyed ZnxCd1-xSySe1-y nanocrystals”, Journal of Computational Electronics, 17 (2018) 888-898.

    37. Worasak Sukkabot, “Atomistic tight-binding theory applied to structural and optical properties of silicon nanodisk”, Journal of Electronic Materials, 47(8) (2018) 4892-4901.

    38. Worasak Sukkabot, “Atomistic tight-binding theory for acceptor states (C, Be, Mg, Zn, Si and Cd) of GaAs nanocrystals”, Journal of Computational Electronics, 17 (2018) 1434–1440.

    39.  Worasak Sukkabot, “Atomistic effect of internal and external shell on physical behaviours of InP/GaP/ZnS core/shell/shell nanocrystals: Empirical tight-binding theory”, Computational Materials Science 161 (2019) 46–52.

    40.  Worasak Sukkabot, “Insight into C, Ge and Sn substitution on structural and electronic properties of Li2FeSiO4: Spin density functional theory”, Materials Chemistry and Physics 229 (2019) 467-473.

    41.  Worasak Sukkabot, “A spin density functional calculations in electronic structures and magnetic properties of transition metal doped GaP”, Chemical Physics, 523 (2019) 57.

    42.  Worasak Sukkabot, “Structural and magnetic properties of transition-metal doped scandium nitride (ScN): Spin density functional theory”, Physica B: Condensed Matter 570 (2019) 236.

    43.  Worasak Sukkabot, “Spin density functional calculations of the electronic structures and magnetic properties of transition-metal doped BeO”, Chinese Journal of Physics 62 (2019) 335.

    44.  Worasak Sukkabot, “First-principles calculations of the monoclinic transition-metal doped NaMnO2 cathode material”, Philosophical Magazine 100(7) (2020) 917-926.

    45. Worasak Sukkabot, “Transition-metal control of electronic and magnetic properties in GeC semiconductor: spin density functional calculations”, Phys. Scr. 95 (2020) 035804.

    46. Worasak Sukkabot, “Effect of transition metals doping on the structural and electronic properties of LiMnPO4: spin density functional investigation”, Phys. Scr. 95 (2020) 045811.

    47. Worasak Sukkabot, “Tailoring doping effect in olivine-type NaMnPO4: insights from density functional theory”, Phys. Scr. 95 (2020) 065804.

    48. Worasak Sukkabot, Atomistic tight-binding theory of structural and optical properties in PbX (X = S, Se, and Te) nanocrystals. Journal of Materials Research, 35(9) (2020) 1190-1196.

    49.  Worasak Sukkabot, “Atomistic tight-binding calculations of CdSe/CdS core/shell dot-in-hexagonal platelet nanocrystals with interesting electronic structures and optical properties”, Physica B: Condensed Matter 624 (2022) 413435.

    50. Worasak Sukkabot, “Atomistic tight-binding investigations of Mn-doped ZnSe nanocrystal: Electronic, optical and magnetic characteristics”, Materials Science in Semiconductor Processing 140 (2022) 106401.

    51. Worasak Sukkabot, “Atomistic effect of laterally and vertically growth shell on physical

    behaviours of CdSe/CdTe type-II core/crown and core/shell nanoplatelets: tight-binding theory”, Phys. Scr. 96 (2021) 125867.

    52. Worasak Sukkabot, “Tunable electronic, optical and magnetic characteristics in Mn-doped inverted type-I ZnSe/CdSe core/shell nanocrystals: Atomistic tight-binding model”, Materials Science in Semiconductor Processing 147 (2022) 106705.

    53. W. Thajitr, W. Busayaporn, D. P. Rai and W. Sukkabot, “Modulation of electronic and magnetic properties of MoX2 (X = S and Se) monolayer via mono- and co-transition metal dopants: Spin density functional theory”, Phys. Scr. 97 (2022) 095805.

    54. Worasak Sukkabot, “Electronic structures and optical characteristics of CdSbulk/CdSe nanoshells and CdSbulk/CdSe/CdS quantum-well nanoshells: Atomistic tight-binding computations”, Materials Science in Semiconductor Processing 153 (2023) 107160.

     

     

Skills
  • C Programming

    FORTRAN Programming

    Matlab

    Mathematica

    Atomistic tight-binding theory in nanostructures